國際簡稱:MACH LEARN-SCI TECHN 參考譯名:機器學習-科學與技術(shù)
主要研究方向:Multiple 非預警期刊 審稿周期:約Submission to first decision before peer review: 3 days; Submission to first decision after peer review: 49 days; 13 Weeks
《機器學習-科學與技術(shù)》(Machine Learning-science And Technology)是一本由IOP PUBLISHING LTD出版的以Multiple為研究特色的國際期刊,發(fā)表該領(lǐng)域相關(guān)的原創(chuàng)研究文章、評論文章和綜述文章,及時報道該領(lǐng)域相關(guān)理論、實踐和應(yīng)用學科的最新發(fā)現(xiàn),旨在促進該學科領(lǐng)域科學信息的快速交流。該期刊是一本開放期刊,近三年沒有被列入預警名單。該期刊享有很高的科學聲譽,影響因子不斷增加,發(fā)行量也同樣高。
Machine Learning: Science and Technology? is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories:
i) advance the state of machine learning-driven applications in the sciences,
or
ii) make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
Particular areas of scientific application include (but are not limited to):
? Physics and space science
? Design and discovery of novel materials and molecules
? Materials characterisation techniques
? Simulation of materials, chemical processes and biological systems
? Atomistic and coarse-grained simulation
? Quantum computing
? Biology, medicine and biomedical imaging
? Geoscience (including natural disaster prediction) and climatology
? Particle Physics
? Simulation methods and high-performance computing
Conceptual or methodological advances in machine learning methods include those in (but are not limited to):
? Explainability, causality and robustness
? New (physics inspired) learning algorithms
? Neural network architectures
? Kernel methods
? Bayesian and other probabilistic methods
? Supervised, unsupervised and generative methods
? Novel computing architectures
? Codes and datasets
? Benchmark studies
CiteScore | SJR | SNIP | CiteScore 指數(shù) | ||||||||||||||||
9.1 | 1.506 | 1.403 |
|
名詞解釋:CiteScore 是衡量期刊所發(fā)表文獻的平均受引用次數(shù),是在 Scopus 中衡量期刊影響力的另一個指標。當年CiteScore 的計算依據(jù)是期刊最近4年(含計算年度)的被引次數(shù)除以該期刊近四年發(fā)表的文獻數(shù)。例如,2022年的 CiteScore 計算方法為:2022年的 CiteScore =2019-2022年收到的對2019-2022年發(fā)表的文件的引用數(shù)量÷2019-2022年發(fā)布的文獻數(shù)量 注:文獻類型包括:文章、評論、會議論文、書籍章節(jié)和數(shù)據(jù)論文。
Top期刊 | 綜述期刊 | 大類學科 | 小類學科 | ||
否 | 否 | 物理與天體物理 | 2區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 MULTIDISCIPLINARY SCIENCES 綜合性期刊 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 計算機:跨學科應(yīng)用 | 2區(qū) 2區(qū) 3區(qū) |
Top期刊 | 綜述期刊 | 大類學科 | 小類學科 | ||
否 | 否 | 物理與天體物理 | 2區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 計算機:跨學科應(yīng)用 | 3區(qū) 3區(qū) |
按JIF指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q1 | 36 / 197 |
82% |
學科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 23 / 169 |
86.7% |
學科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 15 / 134 |
89.2% |
按JCI指標學科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q1 | 43 / 198 |
78.54% |
學科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | SCIE | Q1 | 40 / 169 |
76.63% |
學科:MULTIDISCIPLINARY SCIENCES | SCIE | Q1 | 21 / 135 |
84.81% |
Author: Xue, Tingting; Li, Xu; Chen, Xiaosong; Chen, Li; Han, Zhangang
Journal: MACHINE LEARNING-SCIENCE AND TECHNOLOGY. 2023; Vol. 4, Issue 1, pp. -. DOI: 10.1088/2632-2153/acc007
Author: Liang, Xiao; Li, Mingfan; Xiao, Qian; Chen, Junshi; Yang, Chao; An, Hong; He, Lixin
Journal: MACHINE LEARNING-SCIENCE AND TECHNOLOGY. 2023; Vol. 4, Issue 1, pp. -. DOI: 10.1088/2632-2153/acc56a
Infrared Physics & Technology
中科院 3區(qū) JCR Q2
Advanced Quantum Technologies
中科院 2區(qū) JCR Q1
Apl Photonics
中科院 1區(qū) JCR Q1
Acta Photonica Sinica
中科院 4區(qū) JCR Q4
Photonic Sensors
中科院 2區(qū) JCR Q1
Optics Express
中科院 2區(qū) JCR Q2
Prx Quantum
中科院 1區(qū) JCR Q1
Machine Learning-science And Technology
中科院 2區(qū) JCR Q1
若用戶需要出版服務(wù),請聯(lián)系出版商:IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL, ENGLAND, BS1 6BE。