前言:本站為你精心整理了二次函數(shù)的圖象和性質(zhì)教學(xué)數(shù)學(xué)教案范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
設(shè)計理念
學(xué)生的發(fā)展是新課程標(biāo)準(zhǔn)實施的出發(fā)點和歸宿,課程改革的重點是面向全體學(xué)生,以學(xué)生的發(fā)展為主體,轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式?!?a href="http://www.83352.cn/jinpingxili/jxjan/shuxuejan/200912/334520.html" target="_blank">二次函數(shù)的圖像的性質(zhì)”這一課題,通過對傳統(tǒng)教法的改進,以全新的自主的學(xué)習(xí)方式讓學(xué)生接受問題挑戰(zhàn),充分展示自己的觀點和見解,給學(xué)生創(chuàng)設(shè)一種寬松、愉快、和諧、民主的科研氛圍,讓學(xué)生感受“二次函數(shù)的性質(zhì)”的探究發(fā)現(xiàn)過程,體驗研究過程,體驗成功的快樂。
教學(xué)目標(biāo)
知識目標(biāo)
1、利用計算機制作動畫(讓學(xué)觀察拋物線的形成過程)培養(yǎng)學(xué)生以運動變化的觀點來觀察問題、分析問題、解決問題的意識。
2、會用描點法畫出二次函數(shù)的圖像,能通過圖像認識二次函數(shù)的性質(zhì)
3、通過具體例子,在探索二次函數(shù)圖像和性質(zhì)的過程中,學(xué)會利用配方法將數(shù)字系數(shù)的二次函數(shù)表達式表示成:y=a(x-h)^2+k的形式,從而確定二次函數(shù)圖像的頂點和對稱軸。
4、通過一般式與頂點式的互化過程,了解互化的必要性。培養(yǎng)學(xué)生認識“事物都是相互聯(lián)系、相互制約”的辯證唯物主義觀點。
5、在經(jīng)歷“觀察、猜測、探索、驗證、應(yīng)用”的過程中,滲透從“形”到“數(shù)”和從“數(shù)”到“形”的轉(zhuǎn)化,培養(yǎng)了學(xué)生的轉(zhuǎn)化、遷移能力,實現(xiàn)感性到理性的升華。
情感目標(biāo)
1、通過主動操作、合作交流、自主評價,改進學(xué)生的學(xué)習(xí)方式及學(xué)習(xí)質(zhì)量,激發(fā)學(xué)生的興趣,喚起好奇心與求知欲,點燃起學(xué)生智慧的火花,使學(xué)生積極思維,勇于探索,主動獲取知識。
2、讓學(xué)生在猜想與探究的過程中,體驗成功的快樂,培養(yǎng)他們主動參與的意識、協(xié)同合作的意識、勇于創(chuàng)新和實踐的科學(xué)精神。
能力目標(biāo)
1、擬通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、探索能力、數(shù)形結(jié)合能力、歸納概括能力,綜合培養(yǎng)學(xué)生的思維能力及創(chuàng)新能力。
2、培養(yǎng)學(xué)生運用運動變化的觀點來分析、探討問題的意識。
教學(xué)重點:二次函數(shù)的性質(zhì)
教學(xué)難點:通過研究、、、這幾類函數(shù)圖像,得出平移規(guī)律,并總結(jié)概括出二次函數(shù)的性質(zhì)。
教學(xué)方法:
運用問題解決理論指導(dǎo)教學(xué),力求體現(xiàn)“自主學(xué)習(xí)、動手實踐、合作交流”的教學(xué)理念。
教學(xué)設(shè)備:計算機、網(wǎng)絡(luò)
[教學(xué)內(nèi)容]
步驟教學(xué)內(nèi)容呈現(xiàn)方式
復(fù)習(xí)我們已經(jīng)學(xué)習(xí)了一次函數(shù)與反比例函數(shù),那么一次函數(shù),反比例函數(shù)的圖像分別是、.用媒體方式呈現(xiàn),讓學(xué)生填空,然后提交.
探索二次函數(shù)的圖象是什么呢?(課前已經(jīng)做過)
(1)畫出圖像經(jīng)過了哪些過程?
(2)列表時自變量取了幾個數(shù)?哪幾個數(shù)?
(3)找?guī)孜煌瑢W(xué)展示一下自己畫的圖像。
(4)想一想,列表時如何合理選值?以什么數(shù)為中心?當(dāng)x取互為相反數(shù)的值時,y的值如何?讓學(xué)生結(jié)合老師強調(diào)的作圖注意事項,再畫函數(shù)的圖圖像。
然后老師用畫函數(shù)工具作出的圖像。由學(xué)生觀察作比較。
教會學(xué)生用畫函數(shù)工具畫圖,讓學(xué)生比較兩種畫法,弄清學(xué)生自己所畫的不足之處.
(2)觀察函數(shù)的圖象,你能得出什么結(jié)論?
用幾何畫板呈現(xiàn)已畫好的函數(shù)圖象,讓學(xué)生觀察圖象上的點變化的過程,確認函數(shù)值隨著自變量的變化而變化的規(guī)律.
讓學(xué)生歸納函數(shù)的圖象的性質(zhì).
老師作總結(jié).
歸納:(1)二次函數(shù)的圖象是拋物線,并且開口向上;
(2)二次函數(shù)的圖象的對稱軸是軸;
(3)拋物線與對稱軸的交點叫做拋物線的頂點,那么二次函數(shù)的頂點坐標(biāo)是;
(4)在對稱軸的左邊隨著的增大而減?。辉趯ΨQ軸的右邊隨著的增大而增大.
實踐一
一、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):
(1);
(2).
利用畫函數(shù)圖象工具。觀察、比較兩圖象之間的關(guān)系。
2.練習(xí):利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):
(1);
(2).
學(xué)生觀察、總結(jié)、交流
二、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找兩圖象之間的關(guān)系:
(1),;
(2),.
利用畫函數(shù)圖象工具.
2.練習(xí):利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象:
,,
觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?
利用畫函數(shù)圖象工具.
三、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:
(1),;
(2),;
(3),.
利用畫函數(shù)圖象工具.
2.不畫出圖象,你能說明拋物線與之間的關(guān)系嗎?
四、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:
(1),,;
(2),,;
(3),,.
利用畫函數(shù)圖象工具.教師指出就叫拋物線的頂點式。
2.把拋物線向左平移3個單位,再向下平移4個單位,所得的拋物線的函數(shù)關(guān)系式為.
討論二次函數(shù)的圖象可由函數(shù)怎樣平移而得到?
歸納:由函數(shù)的圖象沿對稱軸向上(下)平移個單位(為向上,為向下),
向右(左)平移個單位(為向右,為向左)得到函數(shù)的圖象.
實踐二1.由二次函數(shù)解析式能否寫出它的一般式.
2.討論二次函數(shù)的圖象怎樣畫,它的開口方向、對稱軸和頂點坐標(biāo)分別是什么?學(xué)生努力把它變形為頂點式
牛刀小試(1)拋物線,當(dāng)x=時,y有最值,是.
(2)當(dāng)m=時,拋物線開口向下.
(3)已知函數(shù)是二次函數(shù),它的圖象開口,當(dāng)x時,y隨x的增大而增大.
(4)拋物線的開口,對稱軸是,頂點坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的.
(5)函數(shù),當(dāng)x時,函數(shù)值y隨x的增大而減?。?dāng)x時,函數(shù)取得最值,最值y=.
(6)畫圖填空:拋物線的開口,對稱軸是,頂點坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的.
(7)將拋物線如何平移可得到拋物線()
A.向左平移4個單位,再向上平移1個單位
B.向左平移4個單位,再向下平移1個單位
C.向右平移4個單位,再向上平移1個單位
D.向右平移4個單位,再向下平移1個單位
(8)拋物線可由拋物線向平移個單位,再向平移個單位而得到.
(9)二次函數(shù)的對稱軸是.
(10)二次函數(shù)的圖象的頂點是,當(dāng)x時,y隨x的增大而減?。?/p>
通過網(wǎng)絡(luò)完成,然后反饋.
小結(jié)1、會用描點法畫出二次函數(shù)的圖象,概括出圖象的特點及函數(shù)的性質(zhì).
2、會用工具畫出、、、這幾類函數(shù)的圖象,通過比較,了解這幾類函數(shù)的性質(zhì).
3、熟練掌握二次函數(shù)、、、這幾類函數(shù)圖象間的平移規(guī)律.
4、能通過配方把二次函數(shù)化成+k的形式,從而確定這類二次函數(shù)的性質(zhì).
作業(yè)1.在同一直角坐標(biāo)系中,畫出下列函數(shù)的圖象.
(1)(2)
2.填空:
(1)拋物線,當(dāng)x=時,y有最值,是.
(2)當(dāng)m=時,拋物線開口向下.
(3)已知函數(shù)是二次函數(shù),它的圖象開口,當(dāng)x時,y隨x的增大而增大.
3.已知拋物線,求出它的對稱軸和頂點坐標(biāo),并畫出函數(shù)的圖象.
4.利用配方法,把下列函數(shù)寫成+k的形式,并寫出它們的圖象的開口方向、對稱軸和頂點坐標(biāo).
(1)
(2)
(3)
(4)